Are Cats smarter than what we think?

Planet Of Animals
Planet Of Animals

Are Cats Smarter Than What We Think?

Are Cats Smarter Than What We Think?


Cat intelligence is the capacity of the domesticated cat to solve problems, and adapt to its environment. Researchers have also shown feline intelligence to include the ability to acquire new behavior that applies previously learned knowledge to new situations, communicating needs and desires within a social group, and responding to training cues.

Brain size

The brain of the domesticated cat is about 5 centimeters (2.0 inches) long, and weighs 25–30 g (0.88–1.06 oz). If a typical cat is taken to be 60 cm (24 in) long with a weight of 3.3 kg (7.3 lb), then the brain would be at 0.91% of its total body mass, compared to 2.33% of total body mass in the average human. Within the encephalization quotient proposed by Jerison in 1973, values above 1 are classified big brained, while values lower than 1 are small brained. The domestic cat is attributed a value of between 1–1.71 relative to human value that is 7.44–7.8. The largest brains in the cat kingdom are those of the tigers in Java and Bali, of which the largest relative brain size within the pantera is the tigris. It is debated whether there exists a causal relationship between brain size and intelligence in vertebrates. Correlations have been shown between these factors in a number of experiments. However, correlation does not imply causation. Most experiments involving the relevance of brain size to intelligence hinge on the assumption that complex behavior requires a complex (and therefore intelligent) brain; however, this connection has not been consistently demonstrated.

The surface area of a cat's cerebral cortex is approximately 83 cm2 (13 in2) whereas the human brain has a surface area of about 2,500 cm2 (390 in2). Furthermore, a theoretical cat weighing 2.5 kg (5.5 lb) has a cerebellum weighing 5.3 g (0.19 oz), 0.17% of the total weight.



Taken as a whole, cats have excellent memories. However, relationships with humans, individual differences in intelligence, and age may affect memory. Cats adapt to the environment that they are in easily because they can recall what they have learned in the past and adapt these memories to the current situation to protect themselves throughout their lives.


For kittens, play is more than simple enjoyment and fun in the animal world. These things rank social order and prey-capturing skills and hone the cat for survival. In addition to this, they are exercising their minds and bodies in rehearsal for their adult roles. Before they were domesticated, kittens learned survival skills such as where to find food from observing their mothers. The first two to seven weeks are a critical time for kittens. This is when they bond with other cats. It has been suspected that without any human contact during this time, the cat would forever mistrust humans.

Older cats

Just as in humans, advancing age may affect memory in cats. Some cats may experience a weakening of both learning ability and memory that affects them adversely in ways similar to those occurring in poorly aging humans. A slowing of function is normal, and this includes memory. Aging may affect memory by changing the way their brain stores information and by making it harder to recall stored information. Cats lose brain cells as they age, just as humans do. The older the cat, the more these changes can affect its memory. There have been no studies done on the memories of aging cats, but there is some speculation that, just like people, short-term memory is more affected by aging.In one test of where to find food, cats' short-term memory lasted about 16 hours.


Disease may also affect cat memory. There is a syndrome called Feline Cognitive Dysfunction (FCD) that is similar to Alzheimer's disease in humans. The symptoms include disorientation, reduced social interaction, sleep disturbances, and loss of house training. This syndrome causes degenerative changes in the brain that are the source of the functional impairment.


Domestication effect

Cat intelligence study is mostly from consideration of the domesticated cat. The process of domestication has allowed for closer observation of cat behaviour and in the increased incidence of interspecies communication, and the inherent plasticity of the cat's brain has become apparent as the number of studies in this have increased scientific insight. Changes in the genetic structure of a number of cats have been identified as a consequence of both domestication practices and the activity of breeding, so that the species has undergone genetic evolutionary change due to human selection. The domesticated cat developed by artificial selection to possess characteristics desirable for the sharing of human habitation and living, coupled with an initial naturally occurring selective set of cat-choices made while interacting with Neolithic urban environments.

The intelligence of the cat is believed to be largely dependent upon its inter-species relations, e.g. between H. sapiens and F. catus, and is reflected in responses in the stress hormones released in cats kept from exploratative behaviours. That is to say, an enriched and stimulating environment produced by exploring urban places increased the likelihood of cerebral plasticity due to the need of situations requiring novel adaptive behaviours. This scavenging behavior would only have produced slow changes in evolutionary terms. Such changes are comparable to the changes to the brain of early primitive hominids who co-existed with primitive cats, like Machairodontinae, Megantereon and Homotherium, and adapted to savannah conditions.


Learning capacity

The cats in the key experiments conducted by Edward Thorndike were able to learn through operant conditioning. In Thorndike's experiment, cats were placed in various boxes approximately 20 inches long, 15 inches wide, and 12 inches tall with a door opened by pulling a weight attached to it. The cats were observed to free themselves from the boxes by "trial and error with accidental success."In one test the cat was shown to have done worse in a later trial than in an earlier one, suggesting that no learning from the previous trials was retained in long-term memory. The scientist considered the cat to have the capacity for learning due to the law of effect, which states that responses followed by satisfaction (i.e. a reward) become more likely responses to the same stimulus in the future.

An experiment was conducted in 2009 where cats could pull on a string to retrieve a treat under a plastic screen. When presented with one string, cats had no trouble getting the treats. When presented with multiple strings, some of which were not connected to treats, the cats were unable to consistently choose the correct strings, leading to the conclusion that cats do not understand cause and effect in the same way that humans do. Thorndike was skeptical of the presence of intelligence in cats, criticizing sources of the contemporary writing of the sentience of animals as "partiality in deductions from facts and more especially in the choice of facts for investigation."

Research was made to identify possible observational learning in kittens. Kittens that were able to observe their mothers performing an experimentally organised act were able to perform the same act sooner than kittens that had observed a non-related adult cat, and sooner than the ones who, being placed in trial and error conditions, observed no other cat performing the act. Experimental investigation of primates has shown chimpanzee possess some limited insight with